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Received 29 March 1982 

Abstract. Motivated by considerations arising from many-body quantum physics we 
consider the moment problem in the general case where the moments are finite real 
numbers. We present a well defined analytic procedure for the construction of an infinite 
set of exact solutions to the above problem and discuss several special cases. 

1. Introduction 

The problem of moments has a long history and has occupied the attention of many 
of the most eminent mathematicians. The theory they constructed is now encapsulated 
primarily in a very elegant book (Akhiezer 1965). The problems that have been 
studied most intensively are those concerned with the moments of some non-decreasing 
function a ( x ) ,  which are defined by 

W 

Sk = I-, X k  du(x)  k = 0, 1,2,  . . . 

where the integral is of the Lebesque-Stieltjes variety. It is required to find u ( x )  
given the moments sk. This problem will henceforth be called the positive-weight 
moment problem (PWMP) (Haydock 1976, Whitehead et al 1977, Whitehead and 
Watt 1981). 

Very little attention, however, has been given to the possibility of finding a function, 
which is not necessarily non-decreasing and satisfies equation (1 . l ) ,  provided the 
moments are known. We shall refer to this as the moment problem for non-positive 
distributions or as the negative-weight moment problem (NWMP). There is an intuitive 
implausibility about the NWMP and with the exception of a few sideglances in connection 
with Gaussian quadrature with negative-weight functions (Krylov 1962) there seems 
to exist no literature on it. 

In a recent work (Flessas et a1 1982) we have described a method for finding 
solutions to equation (1.1) for any set of sk .  The aim of the present paper is to extend 
the procedure introduced in our previous work and thereby construct an infinite set 
of solutions for equation (1.1) for arbitrary real moments sk. In $ 2  we provide the 
physical motivation for considering this kind of problem. In 0 3 we carry out the 
solution of equation (1.1) for any given real sk and in 0 4 we make some comments 
concerning the solutions thus obtained and discuss several special cases. Finally in 0 5 
we summarise our results. 

0305-4470/82/103119 + 12$02.00 0 1982 The Institute of Physics 3119 
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2. Relation of the problem with quantum physics 

Our interest in the problem of moments stems from its connection with the theory 
of renormalised or effective interactions in quantum many-body physics. Consider a 
quantum mechanical system whose time-independent Schrodinger equation in some 
basis is 

In general H will be a real symmetric matrix of very large (possibly infinite) order 
and $ will be a correspondingly large vector; E is the energy of the system. These 
matrices and vectors may be formally partitioned thus 

In performing the partitioning we have it in mind that of the entire vector space 
inhabited by $ there may be a relatively small portion which governs the main physics 
of the problem, the rest of the space contributing 'higher-order corrections'. In the 
nuclear shell model, for example, the partitioning is suggested by the apparent shell 
structure (which we must point out is not completely understood). The practice is 
usually to choose the largest model space, whence the notation $,,, in equation (2.2), 
that can be handled conveniently and totally ignore the rest, which may therefore be 
called the excluded space, whence ( L e .  

In order to get agreement between theory and experiment it is then necessary to 
modify in some way the model space part, A,  of the Hamiltonian matrix in equation 
(2.2). The resulting matrix is then called an effective Hamiltonian for the model space 
concerned. So far no really satisfying a priori method of obtaining the effective 
Hamiltonian has been found. 

An alternative approach is to eliminate $e from equation (2.2), thus expressing 
everything in terms of the model space part of 4. The result is 

where the second term on the left may be thought of as a renormalisation of the 'bare' 
Hamiltonian A .  Equation (2.3) is now a nonlinear eigenvalue problem. The dis- 
cussion of practical methods for coping with equation (2.3) and the investigation of 
its relation with the linear eigenvalue problem, though important, are of no direct 
concern to us here. Of more relevance to the present investigation is the following 
observation. If the model space were chosen to be one dimensional, equation (2.3) 
becomes 

1 
E - B  

A +~--4 = E (2.4) 

where cT is the column vector into which the rectangular matrix C'' degenerates in 
these circumstances. Note that cT is a vector entirely in the excluded space. The 
nonlinear term in equation (2.4) is thus the matrix element of the resolvent (E-B)- '  
in the vector c', The connection with the PWMP is now apparent. We may write (see 
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also Whitehead et a1 1977) 

1 2 c-cT= IC1 
E - B  

1 

3121 

(2.5) 

where the a andp  are the elements of the Jacobi matrix (Akhiezer 1965) associated with 
the moments 

1 k sk = 7 ~ ~ k ~ T =  1 mixi 
IC I i = l  

x i  being the eigenvalues of the real and symmetric matrix B, and 

mi = (eicT/lcl)* > 0. (2.7) 

Equation (2.7) is the scalar product of the ith eigenvector of B with the vector cT. 
Due to equation (2.7) it is obvious that the weight function in equation (2.6) is 
liositive. The theory of moments assures us of the convergence of the continued 
fraction in equation (2.5) everywhere in the complex E plane except at the eigenvalues 
of B (which are on the real axis). The important point is that the standard theory of 
the PWMP is applicable (Whitehead et a1 1977). In practice, in fact, we are given the 
sk and in the context of the above theory we can calculate both the xi and the mi. 
For the sake of completeness we note that equation (2.6) implies that +) in equation 
(1 .1)  is sectionally constant and possesses discontinuities mi at xi; this is just one of 
the (in general) infinite set of solutions to equation (l.l),  where an infinite set of 
moments is given. 

Now, let us expand the model space to two dimensions. The coupling matrix CT 
in equation (2.3) consists then of two column vectors cf and c: and so equation (2.3) 
becomes 

-1 T - 1  T A l , + c l ( E - B )  ~1 AlZ+Cl(E-B) ~2 
- 1  T - 1  T) ( sml )  = E( ' m l ) .  (2.8) 

( A  I Z + C ~ ( E - B )  C I  A ~ z + c z ( E - B )  cz +Om2 rLmZ 

It is clear that the nonlinear part of the off -diagonal terms are matrix elements of the 
resolvent between two different vectors and, therefore, that nonlinear contributions 
in the matrix in equation (2.8) may lead us to a NWMP in general. But expanding the 
model space from one dimension to two cannot add to the inherent difficulty of the 
problem. The most plausible expansion would consist of choosing the 2 x 2 matrix A 
so that its eigenvalues most closely approximate the two lowest eigenenergies of the 
system, and, hence, in the vicinity of the ground state equation (2.8) ought to be much 
better than equation (2.4) where the entire perturbation comes in through the resol- 
vent. We thus have an apparent paradox. There are two ways out: either the whole 
effective interaction idea is useless and we are indulging in idle speculation, or the 
NWMP, at least insofar as it impinges upon off-diagonal matrix elements of resolvents, 
has some unsuspected features which translate into sensible solutions for equation 
(2.8). The success of calculations with effective Hamiltonians in various many-body 
problems shows that the first alternative is probably wrong and so we are left with 
the second. 

Having now described the physical basis for our interest in the NWMP we proceed 
to show that in principle solutions of the problem are possible. 
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3. Formal solution to the NWMP 

In this section we shall show that given any sequence of finite real numbers Sk, 
k = 0,1,2,  . . . , 2 n  - 1, it is possible to find a piece-wise constant function a ( x )  which 
has, in general, 2n points of discontinuity and whose moments 

are equal to the given numbers. This function is not unique and we construct it in 
such a way that its degree of arbitrariness is clear. 

There is a well known theorem according to which any function of bounded 
variation can be expressed in infinitely many ways as the difference of two non- 
decreasing functions of bounded variatian (Hobson 1957). We begin, therefore, with 
the conjecture that there exists a a ( x )  satisfying equation (3.1). Since 

a(m) - a(-m) = so < 00 (3.2) 

the theorem applies here. Consequently we may write for a ( x )  

a ( x )  = a'(x) -a - (x)  (3.3) 

where a + ( x )  and &(x) are both non-decreasing functions of x and of bounded 
variation. To solve our problem it is clearly not sufficient to choose an arbitrary 
non-decreasing U+ (say) because u- may not turn out to be non-decreasing; they 
have to be determined simultaneously. Thus from equations (3.1)-(3.3) we have 

(3.4) 

where s; and s i  are the moments belonging to a'(x) and a- (x)  respectively. Consider 
now the quadratic form 

n - 1  n - 1  

(3.5) 
n-1  

Q = 1 S;+kXiXk = 1 sT+kxixk- 1 Si+kXiXk  
i , k = O  i . k = O  i ,k=O 

where use of equation (3.4) has been made. Since a + ( x )  and a - (x )  are both non- 
decreasing and are assumed (as in the standard PWMP) to possess n points of increase 
each, we know that (Akhiezer 1965) 

(3.6) 
Q2 = 2 sr+kxIxk > O 

r ,k=O 

The existence of a ( x )  thus depends on whether it is possible to make the decomposition 
of Sk in equation (3.4) while maintaining the positivity conditions (3.6) which are 
necessary and sufficient. We shall show in the following that this is possible. 

The argument is a little bit clearer if we use Dirac notation. Let us define an 
orthogonal basis !U,), i = 0, . . . , n - 1, and an operator d such that 

(utldluk) = S i i k .  (3.7) 
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Then 

with 

We next make a principal axis transformation on 0 so that 

(3.10) 

where x i  = (eiIx) and lei) is the eigenvector of & corresponding to the eigenvalue Ai. 
Since the matrix (3.7) is real and symmetric all the Ai are real. It is now possible to 
rearrange equation (3.10) so that positive and negative contributions to the sum are 
written separately. Alternatively, we may define new operators &+ and d- such that 

(3.11) 

(3.12) 

Note that any zero eigenvalues are grouped with the positive ones. The reason for 
this will become clear in § 4. Then according to equations (3.10)-(3.12) 

&=&+-&- Q = ( ~ l d l ~ ) = ( ~ l & + l ~ ) - ( ~ l & - l ~ ) =  Q'- Q- (3.13) 

with 

(3.14) 

where equations (3.10) and (3.13) have been taken into account. Equation (3.14) 
shows that Q' 3 0. Further 

(3.16) 

Obviously s t  z0. On using equations (3.7), (3.13) and (3.16) we find 

S i + k  = ( v i / & l Y k )  = si', -sik. (3.17) 

Since Q" 3 0, and bearing in mind that our objective is the decomposition (3.5), it 
remains only to show that s; can be related to the moments of some positive 
distributions. As matters stand they are just numbers. 
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We observe now that equation (3.17) retains its validity if we add an arbitrary 
number aik to both s:k and sik. In the rest of this section we shall show that this can 
be done in such a way that the new numbers s:k +aik  fulfil the conditions necessary 
and sufficient for them to be the moments of a positive distribution. These conditions 
are (Akhiezer 1965) 

(3.18) 

(3.19) 

Clearly owing to equations (3.13) and (3.18) Q = Q1 - Q2. We have, therefore, to 
determine the a lk  so that equations (3.18)-(3.19) are satisfied. From equations (3.16) 
and (3.19) it follows that we must require 

ajk = a&!. (3.20) 

A necessary and sufficient condition for equation (3.18) to be valid is (Akhiezer 1965) 

I aoo+s& a o l + s i l  . . . ao,-i + s i m - i  1 
a l l  +sf l  . alm-1 +S:m-l > O  U01 + So'l D; = 

U01 + So'l D; = 

m = 1 , .  . . , n. (3.21) 

Before examining the general case we shall illustrate the procedure in the case of 
n = 4. We start with equation (3.19). Thus we obtain 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

( 3 . 2 2 ~ )  

(3.23a) 

( 3 . 2 4 ~ )  

(3.25a) 

(3.26) 

Furthermore, take any real aol;  then a l l  is determined from equation (3.21) 

0; > O .  (3.27) 
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Having thus obtained all  we may find a unique value for a02 from equation (3.23). 
Next choose an arbitrary real a l2 .  Then a03 follows uniquely from equation (3.24). 
To compute aZ2 we consider 

D: >O.  (3.28) 

The parameter a13 is fixed therefore by equation (3.25). Finally, a23 is completely 
arbitrary and a33 is chosen subject to the condition 

D:>O. (3.29) 

Schematically we have for the symmetric matrix ( a i k ) :  

/m a02 a03 \ 
(3.30) 

In equation (3.30) we have indicated by boxes around them those elements that are 
either determined from inequalities (i.e. the elements in the main diagonal) or are 
totally arbitrary. Once these have been fixed the remaining follow from equations 

Having chosen the uik as described we must verify that they are consistent with 
the so far unused equation (3 .23a)-(3.25~) .  Take equation ( 3 . 2 3 ~ ) .  Using (3.17) it 
becomes evident that ( 3 . 2 3 ~ )  is transformed into equation (3.23) and so any choice 
of al l  and ao2 satisfying equation (3.23) also satisfies equation ( 3 . 2 3 ~ ) .  Similar 
arguments guarantee the consistency of the remaining equations. 

It is clear that the general case is no different in principle from this illustration. 
We may represent the relationships among the uik thus 

(3.23)-(3.25). 

. . .  . .  

. . .  la,ol M / u o 2  /" 
a01 lalZI/, . . 

8 

. . . .  

. . . .  

. . . .  . .  
. .  

where again each of the boxed quantities is arbitrary, except those on the diagonal 
which are restricted by the conditions 

D'>O i -  1 , .  . . , n. (3.31) 

Each of the other aik is connected by a chain of equalities (indicated by the arrows) 
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to one of the boxed ones and is therefore fixed uniquely. It is important to point out 
that the parameters Sik  are calculated from equations and inequalities which are of 
first degree in the parameter under consideration. This feature ensures that the 
determination of aik can always be carried out. 

We have, by following the procedure described above, arrived at a decomposition 
of the moments s k ,  as equations (3.17) and (3.19) show 

(3.32) k = 0, 1, . . . , 2 n  - 2 

where s i  are the moments for two positive moment problems, which is what we set 
out to do in equation (3.4). The moments st depend on n - 1 completely arbitrary 
parameters aii+l, i = 0, 1, . . . , n -2,  and n constrained by virtue of equation (3.31) 
but otherwise arbitrary quantities aii, i = 0, 1, , , , , n - 1. The total number of arbitrary 
parameters is thus 2n - 1 which is the same as the number of moments considered in 
the decomposition (3.32). Since, however, we require piece-wise constant functions 
U+ and U- each with n points of increase (cf equation (3.18)) we need in addition 
the moments sin-l and s ; ? ~ - ~ .  This means that as well as so,. . . , s ~ ~ - ~  we need to 
include in our method s ~ ~ - ~  which has not yet been used. As for the solution of the 
PWMP pertaining to s i ,  k = 0,. . . , 2 n  - 1, conditions (3.18), or equivalently (3.21), 
are necessary and sufficient and since s t ,  k = 0 , .  . . , 2 n  -2,  are calculated by the 
approach set out in this section, we may define the remaining moments s;n-l by 

32n-1= S 2 n - 1  - h n - l  (3.33) 

+ -  
s k  = s k  - S k  

+ - 

the choice of (say) s i n - ,  amounting to a choice of one additional totally arbitrary 
parameter, making 2n in all. Now we can solve the PWMP for s: and s i  and thus 
obtain U+ and U-; 

x k  du+(x) = si 
00 03 

x k  du-(x) = s i  k = O , .  , , , 2 n  -1. (3.34) 

On defining u ( x )  = L T + ( X )  - u - ( x )  and using equations (3.32)-(3.34) we deduce that 
u ( x )  fulfils equation (3.1) and, hence, solves the NWMP. Clearly d x )  has in general 
2n points of increase. The case n + 03 in equation (3.1) is dealt with simply by passing 
to the limit n +CO in equation (3.34) (Akhiezer 1965). We can summarise the 
procedure presented in this section in the form of the following theorem. 

I_, I, 

Theorem 3.1, Let {sk}?-’ be any sequence of finite and real numbers. The construc- 
tion of a solution u ( x )  to equation (3.1) breaks down into four steps. 

(i) Calculation of the eigenvalues A ,  of the symmetric matrix d in (3.8) and 
determination of the numbers s h  by (3.16). 

(ii) Definition of the quantities s: by (3.19) and decomposition of each integer j ,  
2 s j s 2n -4,  into two numbers i and k : 

(3.35) j = i + k  i = O , .  . , , n - 1  k = 0, . . . , n - 1 .  
If i(/) , k:,) , . , . , i!,!,), k:) are all possible pairs satisfying equation (3.35), set 

sAll*kj,) + a  1 1  0)  *ki ( I ) =  * * = s)l),k(g +a,$’ ,k;’ ,  (3.36) 

The superscript ( j )  implies that equation (3.36) has to be written down for every j .  
(iii) Calculation of a,,, i = 0, , . . , n - 1, from equations (3.26) and (3.31), whereby 

by fixing arbitrarily a,,+l, i = 0, , , . , n - 2, the remaining parameters are found from 
equation (3.36). 
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(iv) Solution of the PWMP for s: determined in (i)-(iii). The function u ( x ) =  
u + ( x )  - u - ( x )  is a solution of equation (3.1). 

4. Discussion of the solutions 

Let us first recall the situation in the standard PWMP. We are given a set of moments 
for which (Akhiezer 1965) 

f l - 1  

i ,k=O 
1 s i + k x i x k  > 0. (4.1) 

Condition (4.1) is necessary and sufficient for the unique determination of the solution 
u ’ ( x )  to the integral equation 

00 

SL = I-, x k  du’(x) 

du’(x)/dx being of the form 

(4.2) 

(4.3) 

Equation (4.3) implies that u ’ ( x )  is a piece-wise constant function of x possessing 
discontinuities mi at the points x i ;  for example x i  and mi may correspond to the 
positions and masses of n particles on the real axis. As long as n is finite the solution 
u ’ ( x )  is unique (Akhiezer 1965). Such a PWMP is called the truncated PWMP. Con- 
versely any n positions x i ,  i = 1, . . . , n, which are completely arbitrary, and n masses 
mi,  which must be positive, completely specify 2n moments from which the positions 
and masses may be recovered. 

Take now a certain u(x) solving equation (3.1). We can write 

(4.4) 
The functions u(l)* give rise to s i ’ ) * .  Assuming that u(l)* have n points of increase 
we have 

(I)+ - u(l)- u = u  

and comparing equations (3.18)-(3.19) with equations (4.5)-(4.6) we observe that the 
procedure of § 3 yields that particular a!:’ in equation (4.6) and, consequently, u ( x )  
in equation (4.4). Further, according to the theorem concerning the decomposition 
of u ( x )  into two non-decreasing u * ( x ) ,  we may consider in place of equation (4.4), 
and referring of course to the same U, 

(4.7) 
Then by replacing the superscript (1) in equations (4.5)-(4.6) by (2) it is clear that 
the method of § 3 can also furnish a::’. To put it otherwise, by following the approach 
of § 3 we are capable of constructing a set (though not the whole set) of solutions to 

(2)+ - p- u = u  
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sh s; . . . s; 

si s; . .  . s;+1 

. D ; =  . 
s; . . s ; k  

> o  
= o  

fork  = O , .  . . , n ' -  1 
for k = n' ,  . . . , n, . . . , (4.8) 

(4.9) 

D ; = O , k = n ' ,  . . . ,  n , . . . .  (4.10) 

If n' = n, equation (4.10) becomes Dl, = 0, k = n, n + 1, . . . . 
From equations (4.9)-(4.10) and since m I > 0 the necessity of conditions becomes 

obvious. The proof of sufficiency proceeds along the same lines as the verification of 
the sufficiency of conditions (3.21) (Akhiezer 1965). It should be noted that conditions 
(4.8) are equivalent to 

n-1 

(4.11) 

An interesting case yet to be considered is the following. Choose, on the real axis, 
n positions xi and fix n arbitrary (not necessarily positive) quantities mi. Then we can 
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calculate a set of moments { S k } i n - l  as 
n 

sk = 1 mix: k = 0, 1, I . . , 2n  - 1. 
i = l  

The determinants 

D k  = 

(4.12) 

can again be written in the form of equation (4.9). Thus it becomes evident that 
Dk # 0. The calculation of moments si, j 2 2n, does not furnish us with any additional 
information since, as in equation (4.10), Dk = 0 for k 2 n. At this point it is worth 
noting that the omission of the words 'sufficient' and 'non-decreasing' renders theorem 
4.1 valid also for arbitrary m:,  whereby for k = 0, , . . , n ' -  1 we have only D ;  # 0 as 
now a ' ( x )  is not necessarily non-decreasing. Clearly the function q ( x )  defined by 

is a solution to 

(4.14) 

(4.15) 

Conversely, if we are given a set { S k } : n - l  and we somehow know or suspect that they 
have been constructed as those in equation (4.12), we can apply the standard procedure 
used in the PWMP, where mi > 0, and recover the x i  and the mi. That procedure works 
simply because the structure of the moments in equation (4.12) is mathematically 
identical to that of the moments constituting a PWMP, as a glance at equations 
(4.2)-(4.3) reveals. But since the determinants Dk in equation (4.13) can be cast into 
the form (4.9), and because the mi are arbitrary, then D k  S O ,  which implies that the 
quadratic form 0 = Z S j + k X j X k  is not positive definite. Thus the set { S k } i n - l  belongs to 
a NWMP. Therefore the procedure of 0 3 is applicable and, hence, we shall get a set 
of solutions to equation (4.15), i.e. to equation (3.1), which possess in general 2n 
points of discontinuity, in contrast to al(x) in equation (4.14) that has precisely n 
discontinuities. This situation is another manifestation of the non-uniqueness of the 
NWMP and, consequently, of its most important difference with the PWMP. In contrast 
to the PWMP in the NWMP n positions xi  and masses mi S 0 do not uniquely specify a 
distribution function a ( x ) .  

In practice, when we are given a set { S k } E n - l  = S,  we must check first by using the 
method of the PWMP if S can be written as in equation (4.12). If in the course of 
such in investigation a non-real x i  turns up, it is immediately evident that S cannot 
be attributed to a a 1 ( x )  defined by equation (4.14). Then the approach of § 3 must 
be app1,ed. 

There still remain two possibilities to be mentioned. First, if the matrix d in § 3 
has no positive eigenvalues then 0 = Z S i + k X i X k  s 0, which shows that the set of s k  

pertain to a a ( x )  which is non-increasing; such a case is exactly the opposite of the 
PWMP and an interesting feature here is that the determinants (4.13) alternate in sign, 
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as equation (4.9) shows: Do < 0, D1 > 0, D2 < 0, . . . , = 

D, = 0 =.  - (note that m, < 0 and that n',  n ' s  n, are the points of decrease of a ( x ) ) .  
Second, if there exists a piece-wise constant function a N ( x )  having N > n discon- 

tinuities and possessing the above set of moments S, then that a N ( x )  cannot be 
reproduced by the standard method of the PWMP because, in that case, we also need 
the moments s2,, s ~ , , + ~ ,  . . . , SZN-1; this situation corresponds to the usual PWMP where 
{sL}~" - '  suffice only for the unique determination of a non-decreasing a ' ( x )  with (at 
most) n discontinuities. A remarkable feature of the procedure of § 3, however, is 
that it enables ps to find sectionally constant functions a ( x )  having in general 2n 
discontinuities and, thus, by appropriately choosing the uIk we may (though not always) 
be able to calculate a ~ ( x )  having all or some of the remaining moments sin, . . . , s ~ ~ - ~ .  

= ~Dn,-l~(-l)'", D,, = - 

5. Summary 

In this work motivated by investigations in many-body quantum physics we have 
presented a well defined procedure for the construction of solutions to equation (3.1). 
The solutions obtained constitute an infinite set and possess a high degree of arbitrari- 
ness which is contained in precisely 2n canonical parameters. The discussion concern- 
ing the above solutions has revealed the differences between the standard PWMP and 
the NWMP. Finally the procedure introduced in § 3 may serve as the means for gaining 
an insight into the physics inherent in equation ( 2 . 8 )  which is related to eigenvalue 
calculations in various problems. 
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